
J Stat Phys (2009) 137: 639–666
DOI 10.1007/s10955-009-9865-3

Central Limit Theorems for the Energy Density
in the Sherrington-Kirkpatrick Model

Sourav Chatterjee · Nicholas Crawford

Received: 15 July 2009 / Accepted: 3 November 2009 / Published online: 13 November 2009
© Springer Science+Business Media, LLC 2009

Abstract In this paper we consider central limit theorems for various macroscopic observ-
ables in the high temperature region of the Sherrington-Kirkpatrick spin glass model. With a
particular focus on obtaining a quenched central limit theorem for the energy density of the
system with non-zero external field, we show how to combine the mean field cavity method
with Stein’s method in the quenched regime. The result for the energy density extends the
corresponding result of Comets and Neveu in the case of zero external field.
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1 Introduction

The study of mean field disordered systems has lately seen much interest from the the-
oretical probability and (mathematical) statistical physics communities. In this paper we
reinvestigate the general problem of proving central limit theorems for macroscopic observ-
ables in such systems. For a reasonable family of models, the book [14] shows how to obtain
such theorems in a direct way, by computing all limiting moments of the random variables
in question (in particular we refer to Sects. 2.5, 2.6, 2.7, 3.5, 3.6 and 5.10). Vaguely, the
method rests on having a priori control of some fundamental order parameter (in the high
temperature regime).
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For the specific model we consider here, the Sherrington-Kirkpatrick model [12], among
the notable rigorous contributions we mention [1, 2, 5, 7–10, 13], culminating in the verifi-
cation of the Parisi formula [15]. The SK model is defined via the Gibbs measure on spin
configurations σ ∈ �N := {−1,1}N with mean field interaction given by the Hamiltonian

HN(σ) =
∑

1≤i<j≤N

1√
N

gi,j σiσj + h

N∑

i=1

σi.

The couplings gi,j are assumed to be independent Gaussian variables with mean 0 and vari-
ance 1; h ∈ R denotes the strength of the external field. In other words, each spin configura-
tion σ ∈ �N is chosen with probability

P (σ) ∝ eβHN (σ).

The parameter β denotes the inverse temperature and note that we have omitted the minus
sign from the exponent for convenience.

In the case of the Sherrington-Kirkpatrick model, the role of the order parameter men-
tioned in the first paragraph is played by the overlap R1,2: Let σ 1, σ 2 ∈ {−1,1}N denote a
pair of spin configurations. The overlap between σ 1, σ 2 is given by

R(σ 1, σ 2) = R1,2 := 1

N

N∑

i=1

σ 1
i σ 2

i .

Control of R1,2 is obtained by relating the full system of N spins to a system in which
one of the particles has been decoupled from the other N − 1 in a ‘smart’ way via the cavity
method. Among other consequences, the cavity method allows the explicit computation of
all moments for R1,2 when properly centered and scaled, and thus proves quenched and
“quenched average” CLTs for R1,2 via the method of moments (for a definition of quenched
and quenched average, see Sect. 1.1).

Our goal in the present work is two fold: First, from a specific viewpoint, we explore the
limiting behavior of

HN = HN(σ) =
∑

1≤i<j≤N

1√
N

gi,j σiσj + h

N∑

i=1

σi

under the quenched and “quenched averaged” Gibbs distributions. In the h = 0 case, this
problem was studied previously by Comets and Neveu in the beautiful work [5] and later
was re-derived using Stein’s method in [4]. Let us recall for the reader the relevant result:

Proposition 1.1 (Proposition 5.2 of [5]) Let h = 0 and β < 1. Then as N → ∞, the law of

HN := (N − 1)− 1
2 [HN(σ) − (N − 1)β/2] (1.1)

under the quenched Gibbs probability distribution weakly converges in probability to the

law of a centered Gaussian with variance β2

2 . More precisely, we have

lim
N→∞

〈exp[μHN ]〉 = exp(β2μ2/4) (1.2)

for every real μ, where the convergence occurs in probability with respect to the i.i.d.
Gaussian couplings.
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In a broader context, the present work may be seen as a test case for a general approach
which strengthens, unifies and extends the CLTs from [14]. In this respect, we address two
issues: first, the ‘method of moments’ only provides distributional convergence in the weak
sense (and no rate of convergence in any associated metric). Second, an inherent feature of
this approach is that a CLT for any other macroscopic observable requires the computation
of joint moments with overlaps, creating extra work each time we consider some new ob-
servable. In particular, we point out that the condition for having central limit theorems for
a variety of observables rests on the invertibility of a single matrix. It seems reasonable to
believe our method extends to other systems, however below we limit considerations to the
SK model.

It is worthwhile to compare Proposition 1.1 to our main result, Theorem 1.5 below. First,
our convergence result for the quenched average law of HN is in the stronger Wasserstein
distance as opposed to weak convergence (which is implicit in the above result). Also, as
one can glean by a simple comparison of the general formulas for the quenched average
and quenched variances σ 2

A and σ 2
Q respectively, the h 
= 0 case involves considerably more

intricate computations. Note further that in general σA 
= σQ, which is however the case if

h = 0. Finally Proposition 1.1 implies that if h = 0, then up to terms of the form o(N
1
2 ), HN

is centered under the quenched Gibbs state. The analogous statement for h 
= 0 is not true.
As a general rule, when h 
= 0 producing results for the SK model is harder than when

h = 0 (attention was brought to this fact by Talagrand in [13]). From a structural point of
view, the difficulties associated with the case h 
= 0 may be summarized by the fact that
under the quenched Gibbs state, the pair of overlaps R1,2, R2,3 are uncorrelated when h = 0
whereas this is not the case for h 
= 0 (even after subtracting off their common mean).

The remainder of this paper is organized as follows. In the next two subsections we
introduce notation and summarize our main results in a non technical way. In addition, we
give a brief summary of Stein’s Method, which is the main tool we use besides the cavity
method. The reader wishing a more detailed introduction should consult [3]. The following
subsection is devoted to a more technical exposition of our method and is really the heart of
the paper. In Sect. 2 we review some technical facts from [14] and extend them to give our
main estimate, Corollary 2.3. In Sect. 3 we give a self contained proof of a quenched average
CLT for the internal energy (i.e. the quadratic portion of HN ). Sections 4 and 5 provide the
proof of our main result. Finally, Sect. 6 contains a number of the calculations used in the
rest of the paper.

1.1 Notations

The consideration of quenched Gibbs states below provides a number of complications.
First, measuring the size of a quenched average is most conveniently addressed through the
concept of replicas: Let us fix a realization of {gi,j }. For each σ ∈ �n

N

Hn
N(σ ) =

n∑

r=1

HN(σ r), with σ r ∈ �N ∀1 ≤ r ≤ n.

The quenched Gibbs state corresponding Hn
N is denoted by 〈·〉. We denote the n-replica

quenched average Gibbs state by ν(·) = E[〈·〉]. There should be no confusion here since
both 〈·〉 and ν define consistent families as n varies.

Let q2 denote the solution to the equation

q2 = E[tanh2(β
√

q2z + h)]



642 S. Chatterjee, N. Crawford

where z is a standard Gaussian random variable. A result due to Guerra [8] and Latała [11]
shows that there is a unique solution for q2 whenever h > 0. We shall use the notation

qp = E[tanhp(β
√

q2z + h)]. (1.3)

A fundamental result, due to Frohlich and Zegarlinski [6] without rates of convergence
and Talagrand [13] with rates, is that for each h ∈ R and at high enough temperature,

E[〈(R1,2 − q2)
2〉] ≤ C

N

for some constant C > 0 as N , the number of spins in the system, tends to ∞. In fact, we
shall assume that (β,h) satisfies

E[〈(R1,2 − q2)
6〉] ≤ C

N3
. (1.4)

We remark that according to [14] Sect. 2.5, there exists a β0 > 0 independent of N,h so
that (1.4) holds for all 0 ≤ β ≤ β0 (actually much more was proved: If β ≤ β0, the random
variable N(R1,2 − q2)

2 has finite exponential moments in a neighborhood of 0).
Our study is facilitated by viewing HN as composed of two terms

HN = EN + NhMN

where

EN(σ) =
∑

1≤i<j≤N

1√
N

gi,j σiσj ,

MN = 1

N

N∑

j=1

σj

denote the internal energy and magnetization of the system respectively. Since we are inter-
ested in the fluctuations of these variables, it is convenient to define the normalized quantities

EN = 1√
N

EN − β
√

N

2
(1 − q2

2 ),

MN = √
N[MN − q1],

R1,2 = √
N[R1,2 − q2],

HN = EN + MN .

For the convenience of the reader, let us sketch Stein’s method (the reader may find a
systematic introduction to the method in [3]). The method exploits two basic ideas. The first
is that one can define distances between the distributions of random variables by optimizing
over classes of test functions. In this paper for example, we use the Wasserstein and Lévy
metrics.

The other idea is that distributions satisfy ‘functional identities’ which can be used to
characterize them. Let zη denote a Gaussian with mean 0 and variance η2. The well known
integration-by-parts identity for Gaussian variables says

E[zηF (zη)] = η2
E[F ′(zη)]. (1.5)
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Now, given a test function u, suppose we solve the ordinary differential equation

xF(x) − η2F ′(x) = u(x) − E[u(zη)],
then we obtain

|E[u(X)] − E[u(zη)]| = |E[XF(X) − η2F ′(X)]|.
Hence, if we can show that X approximately satisfies (1.5), this leads to bounds on the
distance of the distribution of X to a Gaussian distribution in the appropriate sense.

Suppose X,Y are random variables on R with associated distributions μX,μY and cu-
mulative distribution functions FX,FY , we define the Wasserstein distance by

W1(X,Y ) = sup
{u:R→R s.t.

Lip(u)≤1
}
|E[u(X)] − E[u(Y )]|.

Further, recall that weak-∗ convergence on the space of measures on R, when restricted to
probability measures, is metrizable by the Lévy metric ρ:

ρ(X,Y ) = inf{ε ≥ 0 : FX(x − ε) − ε ≤ FY (x) ≤ FX(x + ε) + ε for all x ∈ R}. (1.6)

1.2 Results

Let us begin by stating a CLT for EN under the quenched average measure ν. The proof of
this result provides a template we shall use in the more complicated setting below. Recall
the definition of qp and ν from Sect. 1.1. We use the notation

a = (1 − q2)
2,

b = 2q2 + q2
2 − 3q4,

c = 1 − 6q2 − q2
2 + 6q4.

Let us define the standard deviation σA by

σ 2
A = 1

2
+ β2q2(a − β2(b2 + ac))

(1 − β2a)(1 − β2c) + β4b2
. (1.7)

Theorem 1.2 Suppose that (β,h) satisfies the high temperature condition (1.4). Then for
any function f ∈ F , under the quenched average measure ν

ν(ENf (EN)) = σ 2
Aν(f ′(EN)) + ‖f ‖F CN−1/2.

An easy consequence of this result in combination with Stein’s method is a bound on the
Wasserstein distance from the law of EN under ν to a Gaussian random variable.

Let us recall the basic result from the body of work known as Stein’s Method which
allows us to convert Theorem 1.2 into a CLT with quantitative bounds.

Lemma 1.3 (See [3]) Let g : R → R be a Lipschitz continuous function with Lipschitz
constant L. Suppose that f : R → R solves the ordinary differential equation

f ′(x) − xf (x) = g(x) − E[g(zσ=1)]. (1.8)
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Then

‖f ‖∞ ≤ L, ‖f ′‖∞ ≤
√

2

π
L, ‖f ′′‖∞ ≤ 2L. (1.9)

The last inequality is understood to mean that f ′ is Lipschitz continuous with constant
bounded by 2L.

Corollary 1.4 Suppose that (β,h) satisfies the high temperature condition (1.4). Consider
the random variable EN under the quenched average measure ν. Let zσA

denote a normal
random variable with mean 0 and variance σ 2

A. Then we have

W1(EN, zσA
) ≤ CN−1/2.

Remark 1 Below (Theorem 1.5) we go further and derive a quenched average CLT for HN ,
and use this information to obtain the behavior of the distribution for 〈HN 〉, for which,
interestingly, a Stein characterizing equation does not seem easily accessible.

Our strategy for the derivation of Theorem 1.2 runs roughly as follows: Through a com-
bination of the cavity method and Gaussian integration by parts we reduce the identification
of a functional identity between ν(ENf (EN)) with some scalar multiple of ν(f ′(EN)) to a
characterization of the interaction between the overlap R1,2 and the variable EN through the
quantity

βq2ν(R1,2f (EN)).

Using the cavity method, we derive a pair of (approximate) linear equations involving this
quantity and the pair

βq2ν(R2,3f (EN)) and ν(f ′(EN)).

Solving these equations in terms of ν(f ′(EN)) identifies the Stein characterizing equation.
Let us next formulate a summary of our main findings. Recall that weak convergence for

the space of probability measures on R is metrizable via the Lévy metric ρ, see (1.6).

Theorem 1.5 (The Full Picture) Suppose that (β,h) satisfies the conditions of Theorem 1.6.
Then:

(1) Consider the random variable HN under ν. There exists a variance σ 2
A depending only

on (β,h) so that

W1(HN, zσA
) ≤ CN−1/2.

(2) Let LN denote the random variable HN −〈HN 〉 under the quenched Gibbs distribution.
With σ 2

Q as below in Corollary 1.8, for all ε > 0

lim
N→∞

P(ρ(LN, zσQ
) ≥ ε) = 0.

(3) Finally consider the law of 〈HN 〉 under the Gaussian probability measure. We have

lim
N→∞

ρ(μ〈HN 〉, z√
σ 2
A

−σ 2
Q

) = 0.

We next provide a brief sketch of what is to come, in particular regarding (2) of the
previous theorem.
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1.3 Sketch of Quenched Central Limit Theorem

Our study will revolves around the random vector

X n
N = (E 1

N, . . . , E n
N , M1

N, . . . , Mn
N) (1.10)

where the superscript refers to the replica under consideration. To prove the quenched CLT,
we proceed as follows. The main computational ingredient, stated below as Theorem 1.6
is to derive multivariable quenched average functional identities for the vector X n

N . This
derivation is an elaboration of Theorem 1.2. Stein’s Method bounds then give Corollary 1.7,
which in particular implies an quenched average CLT for HN .

Next, we use replicas to turn this set of quenched average functional identities into a
quenched functional identity by replicating the spin system. By this we mean elaborate use
of the following basic observation: Given a function f : R → R, suppose we are interested
in size of the quenched variance, 〈(f (HN) − 〈f (HN)〉)2〉. This is itself a random variable,
but we may estimate it by taking expectations:

E[〈(f (HN) − 〈f (HN)〉)2〉2].
Then we may always represent this expression in terms of a family of 6 replicas:

E[〈(f (HN) − 〈f (HN)〉)2〉2]
= ν((f (H1

N) − f (H2
N))(f (H1

N) − f (H3
N))(f (H4

N) − f (H5
N))(f (H4

N) − f (H6
N))).

This allows to employ the previously derived quenched average functional identities for X n
N .

The application of this idea to get L2 bounds on the quenched Stein equation is stated
as Corollary 1.8. Part of the subtlety here is that under the quenched Gibbs state, HN is
not centered. Moreover, it seems unclear how to derive functional identities directly for the
centered variable HN −〈HN 〉 since 〈HN 〉 depends on the {gi,j } and σ in a complicated way.
Thus our quenched identity is stated in terms of a functional equation for a Gaussian variable
shifted by the quenched mean 〈HN 〉.

This approach also leads to slight complications since the solution f to the Stein equation

xf (x) − σ 2f ′(x) − μf (x) = g(x) − E[g(σz + μ)] (1.11)

depends nonlinearly on μ,σ (for us σ is fixed, however). This problem is dealt with through
Lemma 5.1, which may be of some independent interest.

Finally, using the quenched average CLT for HN and the quenched CLT for HN (or
equivalently HN − 〈HN 〉) and a characteristic function argument, we derive a CLT for the
variable 〈HN 〉, which provides a fairly comprehensive picture of the fluctuations of the en-
ergy density at high temperatures (see Theorem 1.5). This completes our sketch.

1.4 Main Technical Results

As will become clear below, for the purposes of a quenched CLT, we will need to give an
extension on the usual bounds for the Stein characterizing equation of a random vector. Let
‖�x‖2 denote the Euclidean length of �x ∈ R

2n and let G(�x) be a polynomial in the components
of �x with total degree d . Obviously, there exists a constant CG > 0 so that

∣∣∣∣
∂

∂xi1

· · · ∂

∂xim

G(x)

∣∣∣∣ ≤ CG(1 + ‖x‖2)
d
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for each m-tuple (i1, . . . , im),∈ N
m, the bound holding uniformly in m. Let C1

b (R
d) denote

the set of functions f : R
d → R which are bounded and have one continuous derivative. Let

F = {f ∈ C1
b (R) : f ′ is globally Lipschitz} and define a norm on F by ‖f ‖F = ‖f ‖∞ +

‖f ′‖∞ + Lip(f ′). More generally, let

F2n = {F ∈ C1
b (R

2n) : ∇F is globally Lipschitz}. (1.12)

Let F ∈ F2n and let G : R
2n → R a multivariable polynomial. To keep track of the error

dependence in our calculations, let us introduce the notation Er(F,G) to mean any term
involving F and G which can be bounded above by

|Er(F,G)| ≤ {1 + ‖F‖∞ + ‖F ′‖∞ + Lip(∇F)}

× {1 + CGν((1 + ‖X n‖2)
2d)

1
2 } C√

N
.

Here and below, the constant C > 0 will stand for a generic constant which may depend on
the number of replicas n, the inverse temperature β and the external field h, but will not
depend on F,G or N . The value of this constant may (and will) change from line to line.

Let us next formalize what is proved in the ensuing sections. To be precise, we require a
bit of notation. Let

Ã
k,k′
r,r ′ := ν0((ε

kεk′ − q2)(ε
rεr ′ − q2)).

Recall that under ν0 replicas associated to the final site decouple from the previous N − 1
and so these entries can be expressed explicitly in terms of {1, q2, q4}, depending only on
the number of indices in common.

Let A denote the
(
n+2

2

) × (
n+2

2

)
matrix indexed by the ordered pairs 1 ≤ r < r ′ ≤

n + 2, 1 ≤ k < k′ ≤ n + 2 with entries

A
k,k′
r,r ′ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ã
k,k′
r,r ′ r ′ ≤ k′ ≤ n or r ′ < k′ = n + 1,

−nÃ
k,k′
r,r ′ k′ ≤ n, r ′ = n + 1,

(
n+1

2

)
Ã

k,k′
r,r ′ k′ ≤ n, r = n + 1,

Ã
k,n+1
r,n+1 − (n + 1)Ã

k,n+1
r,n+2

k′ = n + 1, r ′ = n + 1,

−(n + 1)Ã
k,n+1
n+1,n+2 + (

n+2
2

)
(q4 − q2

2 )

k′ = n + 1, r = n + 1, r ′ = n + 2,

1 − q2
2 − 2(n + 2)(q2 − q2

2 ) + (
n+3

2

)
(q4 − q2

2 )

both pairs are {n + 1, n + 2},
0 otherwise (i.e. r ≤ n, r ′ = n + 2).

(1.13)

Parenthetically, we remark that this matrix is closely related to the coefficients appearing
in Lemma 2.2. Recall the definition of F2n (1.12). For any F ∈ F2n and any multivariable
polynomial G : R

2n → R, let GF(X n
N) = G(X n

N)F (X n
N).

To put into context the following result, recall that if �G is a Gaussian vector on R
d with

covariance matrix C , then for any sufficiently regular F : R
d → R,

E[ �GF( �G)] = C · E[∇F( �G)]. (1.14)
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Theorem 1.6 Suppose that (β,h) satisfies the high temperature condition (1.4). Let β be
small enough so that Id−β2A is invertible. Then there exists a positive semi-definite covari-
ance matrix C : R

2n → R
2n so that

ν(E iGF(X n
N)) = C · ν(∇GF(X n

N))i + Er(F,G), (1.15)

ν(MiGF(X n
N)) = C · ν(∇GF(X n

N))n+i + Er(F,G). (1.16)

Remark 2 Implicit in the above theorem is the fact that C arises as the limiting covariance
matrix of the vector X n

N . This follows by specializing G to be one of the coordinate functions
and F to be the constant function 1, however this is not how we identify C. Also, it is worth
noting that by exchangeability of replicas under ν, the entries of C take only 6 distinct values.

Remark 3 Our condition on the invertibility of Id − β2A is a bit unsatisfying, but certainly
holds for β small enough (independent of h). We have not attempted to characterize pre-
cisely invertibility. Qualitatively the result is important, since one can envision applying
similar approaches for proving CLTs in other (mean field) spin glass models. The relation-
ship between the invertibility of this matrix, for some n, and the Almaeda-Thouless line (if
one exists at all) is unclear and would be interesting to investigate.

Specializing Theorem 1.6 to linear functionals of X n
N , we may apply the Stein’s method

machinery.

Corollary 1.7 (Quenched average Multivariate CLT) Let w ∈ R
2n be fixed and suppose

f ∈ F . Let Xw = w · X n
N . Then we have

ν(Xwf (Xw)) = w · Cw ν(f ′(Xw)) + ‖f ‖F CN−1/2.

Consequently,

W1(Xw, zσw ) ≤ CN−1/2

where

σw = w · Cw.

The proof of this corollary is analogous to that of Corollary 1.4 and is omitted from the
paper.

Next we reformulate Theorem 1.6 so as to obtain a quenched CLT for the energy density
of the SK model. By Theorem 1.6,

σ 2
Q = lim

N→∞
ν((HN − 〈HN 〉)2) (1.17)

exists. Moreover, it may be given explicitly by

σ 2
Q = 1 − q2

2 + 2βq2(q3 − q1) − 2βq2([I − β2
C]−1 · �ve)1,3

− 2(β2q1(1 − q2) + β2(q3 − q1q2) − 2βq2)([I − β2
C]−1 · �vm)1,3 (1.18)

where ve
k,k′ = �wk,k′ · (1,−1,0,0) and �vm

k,k′ = �wk,k′ · (0,0,1,−1) and the
(4

2

)
vectors �wk,k′

are
given explicitly: For 1 ≤ k < k′ ≤ 4 and 1 ≤ r ≤ 4, let A(k, k′, r), B(k, k′, r) be defined by

A(k, k′, r) := ν0((ε
kεk′ − q2)ε

r)
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and

B(k, k′, r) :=
{

βq2b if k, k′ 
= r

βa if k = r or k′ = r

otherwise. For each pair {k, k′}, we denote by �wk,k′ ∈ R
2n the vector

�wk,k′ := (B(k, k′,1),B(k, k′,2),A(k, k′,1),A(k, k′,2)).

Corollary 1.8 Suppose that (β,h) satisfies the conditions of Theorem 1.6. Then there exists
a deterministic variance σ 2

Q so that

E[(〈(HN − 〈HN 〉)2〉 − σ 2
Q)2] ≤ CN−1/2.

Moreover, for any function f so that f,f ′ ∈ F , we have

E(〈HNf (HN) − σ 2
Qf ′(HN) − 〈HN 〉f (HN)〉2) ≤ (‖f ‖F + ‖f ′‖F )2CN−1/2.

2 Preliminaries

Let us review the cavity interpolation. Given the n-replica quenched average Gibbs mea-
sure ν, we define the measure νt as follows. Let {zr}n

r=1 denote a sequence of standard
Gaussian variables independent of the coupling constants {gi,j }1≤i<j≤N . Isolating the last
spin of each replica with the notation εr , let 〈·〉t denote the quenched Gibbs state with
Hamiltonian defined by

Hn
N,t = √

t
∑

1≤r≤n

∑

1≤i<j≤N−1

1√
N

gi,j σ
r
i σ r

j + √
1 − t

√
q2zrε

r .

Then we let

νt (f ) := E[〈f 〉t ]. (2.1)

In particular ν0 decouples the replica spins corresponding to the last site from the remainder
of the spin system. We use the notation R−

k,k′ to denote Rk,k′ − εkεk′
/N and extend this

notation in an analogous manner to macroscopic variables such as MN , MN , EN , HN etc.
We begin with two consequences of the interpolation method which will be used often

below. The key lemma, proved in [14], is as follows.

Lemma 2.1 (Proposition 2.5.3 from [14]) Suppose β0 satisfies the high temperature condi-
tion (1.4). Let β ≤ β0. Then for any n ∈ N, there is a K(n) > 0 such that for all f : �n

N → R,

|ν(f ) − ν0(f )| ≤ K(n)√
N

ν(f 2)
1
2 , (2.2)

|ν(f ) − ν0(f ) − ν ′
0(f )| ≤ K(n)

N
ν(f 2)

1
2 . (2.3)



Central Limit Theorems for the Energy Density 649

Here ν ′
0 denotes the derivative of νt with respect to t evaluated at t = 0. Introducing the

notation [m] = {1, . . . ,m} ⊂ N, a direct calculation produces an expression for ν ′
0(f ) (see

p. 77 from [14]):

ν ′
0(f ) = β2

∑

1≤�<�′≤n

ν0(ε
�ε�′

(R−
�,�′ − q2)f )

− β2
∑

1≤�≤n

ν0(ε
�εn+1(R−

�,n+1 − q2)f )

+ β2 n(n + 1)

2
ν0(ε

n+1εn+2(R−
n+1,n+2 − q2)f ). (2.4)

This expression motivates the following general estimate obtained from the cavity
method.

Lemma 2.2 Let S be a fixed finite subset of N and p be a fixed integer. Let η : [p] → N

be an injective function. Suppose that n is large enough so that η([p]) ⊆ [n]. Then if f − :
�n

N−1 → R, we have

ν

((
p∏

l=1

εη(l) − qp

)
f −

)

= β2(qp−2 − qpq2)
∑

1≤�<�′≤p

ν(f −(Rη(�),η(�′) − q2))

+ β2(qp − qpq2)
∑

�′∈[n]\η([p])
1≤�≤p

ν(f −(Rη(�),�′ − q2))

+ β2(qp+2 − qpq2)
∑

�
=�′
{�,�′}⊂[n]\η([p])

ν(f −(R�,�′ − q2))

− β2n(qp − qpq2)
∑

1≤�≤p

ν(f −(Rη(�),n+1 − q2))

− β2n(qp+2 − qpq2)
∑

�∈[n]\η([p])
ν(f −(R�,n+1 − q2))

+ β2 n(n + 1)

2
(qp+2 − qpq2)ν(f −(Rn+1,n+2 − q2)) + ν((f −)2)

1
2 O

(
1

N

)

where O( 1
N

) denotes an expression bounded by CN−1.

We relegate a proof of this statement to Sect. 6. It is a direct consequence of (1.4), (2.4)
and Lemma 2.1.

The key points here are the expression of the right-hand side in terms of ν and not ν0

and the fact that the error is of order 1/N , which is important when considering the scaled
overlaps R�,�′ .

Let V n = (�σ 1, . . . , �σn) and let

V n
i = V n − (�0, . . . , �σ i, . . . , �0).
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Further, for each F : R
Nn → R let F (i)(V) = F(V n

i ). In the next result we denote ∇F(V)

the gradient of F evaluated at V and let ∇2F denote its Hessian.
We let �R denote the

(
n+2

2

)
-tuple overlaps

�R = (R1,2, . . . , R1,n+2, . . . , Rn+1,n+2)

lexicographically ordered so that (i, j) < (k, �) if i < k or if i = k and j < �. If

1 = (1, . . . ,1) ∈ R(n+2
2 ) let �σi = (�σ rr ′

i )1≤r<r ′≤n := (σ r
i σ r ′

i )1≤r<r ′≤n − q21 denote the (lexi-
cographically ordered) replica vector of spins evaluated on the ith vertex.

Recall the definition of the matrix A from (1.13). The following is a simple, but crucial
corollary of the previous lemma.

Corollary 2.3 Suppose that the high temperature condition (1.4) holds. Suppose that
F ∈ C2(RNn). Then entry-wise, we have the following estimate:

ν(F (V n)([Id − β2
A] · �R)) = 1√

N

N∑

i=1

ν(∇F(V n
i ) · (V n − V n

i )�σi) + Rem(F ) (2.5)

where

Rem(F ) = β2

N

N∑

i=1

ν((F (i) − F)A · �R)

+ 1√
N

N∑

i=1

ν((V n − V n
i ) · (∇2F(V0,i ) · (V n − V n

i ))�σi)

+
(

1

N

N∑

i=1

ν((F (i))2)
1
2

)
O

(
1√
N

)

with V0,i = λ0 V n + (1 − λ0)V n
i for some (random) λ0 = λ0(V n, V n

i ) ∈ [0,1].

Remark 4 There are two points worth making: First, most functions F we are interested in
depend very weakly on any given site i; one should think in the simplest case of F(�σ 1) =
G(M1

N). The advantage of the above formulation, which we shall not pursue, is that one
may consider functions like F(�σ) := f (�u · �σ 1) for any �u ∈ S

N−1 such that all coordinates
of �u are ‘small’ in an appropriate sense. Of course, Rem(F ) will be seen to be O( 1√

N
) in

situations considered below.
Second, notice that the first term on the right hand side of (2.5) the argument V n

i does
not depend on the ith vertex, which means we may apply the first estimate from Lemma 2.1
to obtain expressions in terms of ν(∇F(V n

i )). The calculations then ‘close’ by applying
Taylor’s theorem to express ν(∇F(V n

i )) as ν(∇F(V n)) plus some error. This sets up the
functional identities we are after.
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3 The Quenched Average CLT for the Internal Energy

Throughout this section we work under the hypotheses of Theorem 1.2. An object of impor-
tance here and below are the local fields: for an index r ∈ [n], define

�r
N = 1√

N

∑

i<N

gi,Nσ r
i .

Assume for now that f ∈ F . Let us begin with an elementary calculation using Gaussian
integration by parts:

ν(ENf (EN)) = 1

2
ν(f ′(EN)) − β

√
N

2
ν([R2

1,2 − q2
2 ]f (EN)) + O

(‖f ‖F√
N

)
.

It is now natural to write R1,2 = R1,2 − q2 + q2. Expanding in the above expression we
have

−β
√

N

2
ν([R2

1,2 − q2
2 ]f (EN)) = βq2ν(R1,2f (EN)) − β

√
N

2
ν((R1,2 − q2)

2f (EN))

where R1,2 denotes the centered, scaled overlap defined in Sect. 1.1. Because of the high
temperature assumption (1.4), we may bound the final summand by Cβ‖f ‖∞

2
√

N
. Hence the goal

of our analysis will be to identify a formula (up to order N−1/2) for

βq2ν(R1,2f (EN)).

Though we do not appeal explicitly to Corollary 2.3, the next two lemmas essentially
re-derive that result in explicit form. Recall the constants a, b, c defined above Theorem 1.2.
We state our first lemma.

Lemma 3.1 We have the identity

ν((1 − β2a)R1,2f (EN)) = −β2bν(R2,3f (EN)) + βq2aν(f ′(EN)) + O

(‖f ‖F√
N

)
.

Proof Using symmetry, we have

ν(R1,2f (EN)) = ν(
√

N(ε1ε2 − q2)f (EN)). (3.1)

We decouple the argument of f from the last spin variable by writing

EN = E −
N + ε1�1

N√
N

with �1
N defined at the beginning of this section.

An easy calculation shows that ν((�1
N)2) ≤ C for some constant C > 0 independent of N

thus we may use the Taylor expansion to linearize f around E −
N . We obtain the expression

√
Nν((ε1ε2 − q2)f (EN)) = ν(

√
N(ε1ε2 − q2)f (E −

N ))

+ ν((ε1ε2 − q2)ε
1�Nf ′(E −

N )) + O

(‖f ‖F√
N

)
. (3.2)
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Note that E −
N does not involve replicas of spins associated to the N th site, nor does it

involve the disorder associated to the N th site so that the interpolation employed in the
cavity method does not affect this quantity. First we have, by Lemmas 2.1 and 2.2,

ν(
√

N(ε1ε2 − q2)f (E −
N )) = β2(1 − q2

2 )ν(R1,2f (E −
N ))

− β22(q2 − q2
2 )ν(R1,3f (E −

N ))

− β22(q2 − q2
2 )ν(R2,3f (E −

N ))

+ β23(q4 − q2
2 )ν(R3,4f (E −

N )) + O

(‖f ‖F√
N

)
.

= β2(1 − q2)
2ν(R1,2f (E −

N )) − β2bν(R2,3f (E −
N )) + O

(‖f ‖F√
N

)
.

In the last step we used replica symmetry along with the fact that E −
N only depends on the

first replica to combine summands. Since ν(R2
1,2) ≤ C and ν(�2

N) ≤ C, we apply the Taylor
expansion and Lemmas 2.1 and 2.2 again to obtain

ν(
√

N(ε1ε2 − q2)f (E −
N ))

= β2(1 − q2)
2ν(R1,2f (EN)) − β2bν(R2,3f (EN)) + O

(‖f ‖F√
N

)
. (3.3)

For the remaining term from (3.2) we have (using Gaussian integration by parts)

ν((ε1ε2 − q2)ε
1�1

Nf ′(E −
N )) = β

N

N∑

j=2

ν

(
(ε1ε2 − q2)ε

1σ 1
j

(
2∑

k=1

εkσ k
j

)
f ′(E −

N )

)

− 2
β

N

N∑

j=2

ν((ε1ε2 − q2)ε
1σ 1

j ε3σ 3
j f ′(E −

N )).

We apply Lemma 2.1, the Taylor expansion, and symmetry to obtain

ν((ε1ε2 − q2)ε
1�1

Nf ′(E −
N )) = β(1 − q2)

2ν(R1,2f
′(EN)) + ‖f ‖F

C√
N

= βq2(1 − q2)
2ν(f ′(EN)) + ‖f ‖F

C√
N

.

The last line here follows from the assumption that we are in the high temperature region.
Combining the various terms, we have shown that

ν((1 − β2a)R1,2f (EN)) = −β2bν(R2,3f (EN)) + βq2aν(f ′(EN)) + ‖f ‖F
C√
N

. �

A nearly identical argument allows us to treat the term involving R2,3:

Lemma 3.2 We have the estimate

ν(R2,3f (EN)) = β2bν(R1,2f (EN)) + β2cν(R2,3f (EN))

+ βq2bν(f ′(EN)) + ‖f ‖F
C√
N

.



Central Limit Theorems for the Energy Density 653

The above pair of lemmata give us a nontrivial system of equations allowing the solution
of ν(R1,2f (EN)) in terms of ν(f ′(EN)):

Corollary 3.3 We have

((1 − β2a)(1 − β2c) + β4b2)ν(R1,2f (EN))

= βq2(a − β2(b2 + ac))ν(f ′(EN)) + ‖f ‖F
C√
N

.

Proof This is a straightforward manipulation using Lemmas 3.1 and 3.2. �

Proof of Corollary 1.4 To translate Lemma 1.3 to a Gaussian with variance σ 2, let g(x) =
σg∗( x

σ
) and f (x) = f ∗(σx), where f ∗ solves the ordinary differential equation (1.8) for g∗.

Then

σ 2f ′(x) − xf ′(x) = g(x) − E[g(σz)] (3.4)

where z is a standard Gaussian variable. Hence the bounds of Lemma 1.3 become

‖f ‖∞ ≤ L, ‖f ′‖∞ ≤
√

2

π
σL, ‖f ′′‖∞ ≤ 2σ 2L (3.5)

where L = Lip(g) = Lip(g∗).
Now let us fix g : R → R so that Lip(g) ≤ 1 and consider

|ν(g(EN)) − E[g(σz)]|. (3.6)

If f solves (3.4), then

|ν(g(EN)) − E[g(σz)]| = |ν(ENf (EN)) − σ 2ν(f ′(EN))|. (3.7)

By Theorem 1.2, the right hand side is bounded by C‖f ‖F N− 1
2 . This estimate in turn is

bounded by CN− 1
2 from the considerations of the previous paragraph. Optimizing over g

gives the result. �

4 The Quenched CLT for the Energy Density

In this section we shall outline the more complex Theorem 1.6 and Corollary 1.8 which
rely on elaborations of the ideas from the previous section. We will postpone the proofs of
some of the technical statements to Sect. 6, in favor of giving a detailed sketch. Most of the
lemmata left unproven in this section are computationally intensive and obscure the main
idea.

Our first goal is to derive approximate identities for the expressions on the left hand side
of (1.15) with errors given in terms of the moments of ‖X n‖d

2 under ν and L∞ norms of
F and its derivatives. The first idea is to reduce their calculation to the calculation of the
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collection {ν(Rr,r ′GF(X n))}r,r ′≤n+2. Let �vi ∈ R
2n be defined by

�v1 := 1

2
(1, q2

2 , . . . , q2
2 ,0, . . . ,0) (n zeros)

�v2 := βq2(0, . . . ,0,−q1(1 − q2), q1 + q1q2 − 2q3, . . . , q1 + q1q2 − 2q3) (n zeros)

�v3 := 1

2
(1, q2

2 , . . . , q2
2 ,0, . . . ,0) (n zeros).

Next let π denote the cyclic permutation (1 2 . . . n) and let π ⊕ π denote the product of
cycles (1 2 . . . n)(n + 1 . . .2n). We let π and π ⊕ π act naturally on the above vectors by
permuting coordinates, defining

�ei := (π ⊕ π)i−1 · �v1,

�mi := (π ⊕ π)i−1(�v2 + �v3).

Further, let �re, �rm ∈ R(n+2
2 )

�re
k,k′ :=

⎧
⎪⎨

⎪⎩

1 if k = 1, k′ ≤ n

−n if k = 1, k′ = n + 1

0 otherwise

and

�rm
k,k′ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1(1 − q2) if k = 1, k′ ≤ n

−nq1(1 − q2) if k = 1, k′ = n + 1

q3 − q1q2 if 1 < k ≤ n, k′ ≤ n

−n(q3 − q1q2) if 1 < k ≤ n, k′ = n + 1
(
n+1

2

)
(q3 − q1q2) if k = n + 1, k′ = n + 2

0 otherwise.

Finally, we let �R denote the
(
n+2

2

)
-tuple of lexicographically ordered overlaps

(R1,2, . . . , R1,n+2, . . . , Rn+1,n+2).

Lemma 4.1 Suppose that the high temperature condition (1.4) holds. Then we have the
following identities:

ν(E 1GF(X n)) = ν( �e1 · ∇(GF)) + βq2ν( �re · �RGF) + Er(F,G) (4.1)

and

ν(M1GF(X n)) = ν( �m1 · ∇(GF)) + β2ν( �rm · �RGF) + Er(F,G). (4.2)

The proof of Lemma 4.1 is left to Sect. 6.
This lemma suggests that we should study the interaction between the overlaps and the

function GF(X n). This is accomplished in the next lemma, which can be seen as the main
point of the paper. Namely, the behavior of the fluctuations of macroscopic quantities in the
SK model are controlled by their interactions with the overlaps. Moreover, these interactions
are computable through the derivation of an implicit set of equations. This should not be too
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surprising, however we believe that this technique provides a useful general tool for proving
CLTs for the high temperature phase of mean field disordered systems and thus deserves
special attention.

For 1 ≤ k < k′ ≤ n + 2′, let A(k, k′, r), B(k, k′, r) be defined by

A(k, k′, r) := ν0((ε
kεk′ − q2)ε

r)

and

B(k, k′, r) :=
{

βq2b if k, k′ 
= r

βa if k = r or k′ = r

otherwise. For each pair {k, k′}, we denote by �wk,k′ ∈ R
2n the vector

�wk,k′ := (B(k, k′,1), . . . ,B(k, k′, n),A(k, k′,1), . . . ,A(k, k′, n)).

Let D denote the vector of first order differential operators D := ( �wk,k′ · ∇)1≤k<k′≤n+2.
Recall the definition of the matrix A from Sect. 1.2.

Lemma 4.2 Suppose that the high temperature condition (1.4) holds. Then entry-wise, we
have the following identity:

ν(GF(X n)(Id − β2
A) · �R) = ν(D(GF)(X n)) + Er(F,G). (4.3)

The proof of Lemma 4.2 is left to Sect. 6.
The question immediately arises as to when the matrix Id − β2A is invertible. The con-

dition of invertibility, combined with Lemmas 4.1 and 4.2 allows us to obtain Theorem 1.6:

Proof of Theorem 1.6 From Lemma 4.2, we have

ν( �RGF(X n)) = (Id − β2
A)−1 · ν(D(GF)(X n)) + Er(F,G).

Plugging this identity into the right-hand side of (4.1) and (4.2) we obtain the existence of a
pair of vectors e,m ∈ R

2n so that

ν(E 1GF(X n)) = e · ν(∇(GF)) + Er(F,G)

and

ν(M1GF(X n)) = m · ν(∇(GF)) + Er(F,G).

Now from the symmetry of replicas under ν, we have

ν(E iGF(X n)) = e
i · ν(∇(GF)) + Er(F,G)

and

ν(MiGF(X n)) = m
i · ν(∇(GF)) + Er(F,G),

where

e
i := πi−1

e

m
i := πi−1

m.
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The covariance operator claimed in the theorem is then given by

Ci,j :=
{

ei
j if i ≤ n

m
i−n
j if i ≥ n + 1.

By choosing G to be one of the coordinate functions and F to be the constant function 1,
the above equations allow us to identify C with the limiting covariance of X n

N under ν. �

Proof of Corollary 1.8 Let

σ 2
N = ν((HN − 〈HN 〉)2) = ν((H1

N − H2
N)(H1

N − H3
N)).

Now from Theorem 1.6, σ 2
N converges to a limit, which we denote by σ 2

Q, with a rate
bounded by CN−1/2.

We claim that

E[(〈(HN − 〈HN 〉)2〉 − σ 2
Q)2] ≤ C√

N
. (4.4)

Indeed, using replicas

E[(〈(HN − 〈HN 〉)2〉 − σ 2
N)2]

= ν[((H1
N − H2

N)(H1
N − H3

N) − σ 2
N)((H4

N − H5
N)(H4

N − H6
N) − σ 2

N)]. (4.5)

Now, under the quenched average measure ν the collection {H�
N }6

�=1 are exchangeable
and therefore Theorem 1.6 allows us to approximate the expression by the correspond-
ing moment of a collection {h�}6

�=1 of exchangeable Gaussians, up to an error of order

ν((H1
N)6)N− 1

2 where {h�}6
�=1 all have mean 0, variance ν((H1

N)2) and the covariance be-
tween pairs is identically ν(H1

N H2
N). Also, a straightforward calculation with Gaussian in-

tegration by parts shows that under (1.4), ν((H1
N)6) ≤ C so that in fact this error is bounded

by CN−1/2. Finally, note that (4.5) vanishes if we insert {h�}6
�=1 in place of {H�

N }6
�=1 because

of the exchangeability, which proves the claim. Since we observed in the previous paragraph
that |σ 2

N − σ 2
Q| ≤ C√

N
the first assertion of the corollary follows.

We next show

E[〈HNf (HN) − σ 2
Qf ′(HN) − 〈HN 〉f (HN)〉2] = ‖f ‖F ν((HN)4)1/2O(N−1/2).

Using replicas once again, we have

E[〈HNf (HN) − σ 2
Qf ′(HN) − 〈HN 〉f (HN)〉2]

= ν({(H1
N − H2

N)f (H1
N) − σ 2

Qf ′(H1
N)}{(H3

N − H4
N)f (H3

N) − σ 2
Qf ′(H3

N)}).

Via symmetry,

ν({(H1
N − H2

N)f (H1
N) − σ 2

Qf ′(H1
N)}{(H3

N − H4
N)f (H3

N) − σ 2
Qf ′(H3

N)})
= ν((H1

N − H2
N)f (H1

N)(H3
N − H4

N)f (H3
N)) + σ 4

Qν(f ′(H1
N)f ′(H3

N))

− 2σ 2
Qν((H1

N − H2
N)f (H1

N)f ′(H3
N)).
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Let us apply Theorem 1.6 to the first term on the right hand side. Letting G(x) = x and
F(x, y) = f (x)f (y), we have |σ 2

N − σ 2
Q| ≤ CN−1/2 and

ν((H1
N − H2

N)f (H1
N)(H3

N − H4
N)f (H3

N))

= σ 2
Qν((H1

N − H2
N)f (H1

N)f ′(H3
N)) + Er(x,F ).

This leaves us with

E[〈HNf (HN) − σ 2
Qf ′(HN) − 〈HN 〉f (HN)〉2]

= σ 2
Q{σ 2

Qν(f ′(H1
N)f ′(H3

N)) − ν((H1
N − H2

N)f (H1
N)f ′(H3

N))} + Er(x,F ).

Iterating the previous argument yields

E[〈HNf (HN) − σ 2
Qf ′(HN) − 〈HN 〉f (HN)〉2] = Er(x,F ) + Er(1,∇F). �

5 Proof of Theorem 1.5

Proof of Theorem 1.5 (1) We apply Theorem 1.6 in the case n = 1 and for functions

F(EN, MN) := f (EN + MN).

With w = (1,1) this gives

ν(HNf (HN)) = (w,Cw)ν(f ′(HN)) + C‖f ‖F N−1/2

where C is the limiting quenched average covariance matrix for MN, EN . We are thus in a
position to directly apply Stein’s Method. �

Proof of Theorem 1.5 (2) This statement is a consequence of a more general principle, which
may be of independent interest.

Let us consider the following abstract setup: we are given a sequence of random variables
(XN,μN,σN)N≥1 on a probability space (P,�, F ) and let (FN)N≥1 be a sequence of sub-
sigma fields of F such that for each N , μN and σN are measurable with respect to FN

(in particular, we do not assume μN , σN are deterministic. Let E
N denote the conditional

expectation given F N .
For any f ∈ Ck(R), let

|f |k := ‖f ‖∞ + ‖f (1)‖∞ + · · · + ‖f (k)‖∞,

where f (m) denotes the mth derivative of f . �

Lemma 5.1 Suppose that for some fixed integer k and positive real numbers α and L, we
have that for each N and each f ∈ Ck(R),

E(EN(σ 2
Nf ′(XN) − (XN − μN)f (XN)))2 ≤ L|f |kN−α.

Suppose that for each θ ≥ 0, E(eθσ 2
N ) is uniformly bounded over N . Let νN be the conditional

law of XN given FN , and γN be the Gaussian measure with mean μN and variance σ 2
N .
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Then the random signed measure νN − γN converges to the zero measure in probability
as a random sequence on the space of finite signed measures with the metric of weak*
convergence.

Nothing like the full power of Lemma 5.1 is required here. In fact, we know by (4.4) that
we may take

σ 2
N ≡ σ 2

Q := lim
K→∞

E[〈(HK − 〈HK〉)2〉].
Thus the second statement of Theorem 1.5 follows immediately Lemma 5.1 combined with
Corollary 1.8 and the fact that the weak* topology, when restricted to probability measures,
is metrizable by ρ.

Proof Taking f (x) = eitx = cos tx + i sin tx, where i = √−1, we can apply the above in-
equality separately to the real and imaginary parts to get

E(EN(σ 2
NiteitXN − (XN − μN)eitXN ))2 ≤ 2(k + 1)Lmax{1, |t |k}N−α.

Define the random function

φN(t) := E
N(eit (XN −μN )).

Since μN and σ 2
N are measurable with respect to FN and |ieitμN | = 1, we have

|EN(σ 2
NiteitXN − (XN − μN)eitXN )|

= |EN(σ 2
N teit (XN −μN ) + i(XN − μN)eit (XN −μN ))|

= |σ 2
N tφN(t) + φ′

N(t)|.

Let ψN(t) := e−σ 2
N

t2/2. Then φN(0) = ψN(0) = 1, and ψ ′
N(t) = −σ 2

N tψN(t). Thus, for all
t ≥ 0, we have

|φN(t) − ψN(t)| ≤
∫ t

0
|φ′

N(s) − ψ ′
N(s)|ds

≤
∫ t

0
σ 2

Ns|φN(s) − ψN(s)|ds +
∫ t

0
|σ 2

NsφN(s) + φ′
N(s)|ds.

Now fix t ≥ 0, and let

A := σ 2
N t, B :=

∫ t

0
|σ 2

NsφN(s) + φ′
N(s)|ds.

Also, let v(s) := |φN(s)−ψN(s)|. Then we see from the last inequality that for all s ∈ [0, t],

v(s) ≤ A

∫ s

0
v(u)du + B.

By the standard method of using the bound recursively, we get that for all s ∈ [0, t],

v(s) ≤ BeAs.
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Combining the steps and using the Cauchy-Schwarz inequality, we get

E|φN(t) − ψN(t)| ≤ E

(
eσ 2

N
t2

∫ t

0
|σ 2

NsφN(s) + φ′
N(s)|ds

)

≤
∫ t

0
(E(e2σ 2

N
t2
))1/2(E(σ 2

NsφN(s) + φ′
N(s))2)1/2ds

≤ C(t)N−α/2,

where C(t) is a constant depending only on t . This shows that E|φN(t) − ψN(t)| → 0 as
N → ∞ for every t ≥ 0. The same result holds for t ≤ 0 as well. Since φN(t) − ψN(t) is
the characteristic function of the signed measure νN − γN , the proof can now be completed
using standard ‘subsequence-of-subsequence’ arguments. �

Proof of Theorem 1.5 (3) To prove this statement, we compute φN(t) := E[eit〈HN 〉]. By
Theorem 1.5 (1) and standard results on characteristic functions

lim
N→∞

ν(eit HN ) = e−σ 2
A

t2/2.

On the other hand, the proof of Lemma 5.1 gives

lim
N→∞

E[|〈eit (HN −〈HN 〉) − e
−σ 2

Q
t2/2〉|] = 0.

Since

ν(eit HN ) = E[〈eit (HN −〈HN 〉)〉eit〈HN 〉]
we obtain

lim
N→∞

φN(t) = e
−(σ 2

A
−σ 2

Q
)t2/2

. �

6 Proofs of Lemmata

Proof of Lemma 2.2 Note that under the hypothesis of the lemma,

ν0

((
p∏

l=1

εη(l) − qp

)
f −

)
= 0.

Using (2.3), substituting from (2.4) and using the decoupling property of ν0,

ν

((
p∏

r=1

εη(r) − qp

)
f −

)
= β2(qp−2 − qpq2)

∑

{r,r ′}⊆[p]
ν0(f

−(R−
η(r),η(r ′) − q2))

+ β2(qp − qpq2)
∑

r ′∈[n]\η([p])
1≤r≤p

ν0(f
−(R−

η(r),r ′ − q2))

+ β2(qp+2 − qpq2)
∑

{r,r ′}⊂[n]\η([p])=∅

ν0(f
−(R−

η(r),n+1 − q2))
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− β2n(qp − qpq2)
∑

1≤r≤p

ν0(f
−(R−

η(r),n+1 − q2))

− β2n(qp+2 − qpq2)
∑

r∈[n]\η([p])
ν0(f

−(R−
r,n+1 − q2))

+ β2 n(n + 1)

2
(qp+2 − qpq2)ν0(f

−(R−
n+1,n+2 − q2))

+ ν0((f
−)2)

1
2
C

N
.

Recalling that R−
k,k′ = Rk,k′ − εkεk′

N
, we may replace each instance of R−

k,k′ by Rk,k′ at the

cost of an error of the form ν0((f
−)2)

1
2 CN−1. Applying (2.2), using the Cauchy-Schwarz

inequality and the high temperature condition (1.4) to bound the error gives the result. �

Proof of Corollary 2.3 We shall present the calculation only in the case of ν(Rn+1,n+2F).
The identities for the remaining coordinates are straight forward adaptations. By definition

ν(Rn+1,n+2F) = 1√
N

N∑

i=1

ν((σ n+1
i σ n+2

i − q2)F (V n)).

Let us restrict attention to a single summand as each of the summands may be treated
similarly. Using the mean value theorem to expand F around V n

i up to its second order
derivatives, we have

ν((σ n+1
i σ n+2

i − q2)F (V n))

= ν((σ n+1
i σ n+2

i − q2)F (V n
i ))

+ ν((σ n+1
i σ n+2

i − q2)∇F(V n
i ) · (V n − V n

i ))

+ 1

2
ν((σ n+1

i σ n+2
i − q2)(V n − V n

i ) · ∇2F(λ0 V n + (1 − λ0)V n
i )(V n − V n

i ))

where the constant λ0 may be taken to depend measurably on V n, V n
i .

Obviously, the interpolation scheme applies equally to any vertex i, so Lemma 2.2 im-
plies that

ν((σ n+1
i σ n+2

i − q2)F (V n
i )) = β2

√
N

∑

1≤r<r ′≤n+4

C̃r,r ′ν(Rr,r ′F(V n
i )) + ν(F 2(V n

i ))
1
2 O(N−1),

where

C̃r,r ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

q4 − q2
2 if r, r ′ ≤ n

q2 − q2
2 if r ≤ n, r ′ ∈ {n + 1, n + 2}

1 − q2
2 if r = n + 1, r ′ = n + 2

−n(q4 − q2
2 ) if r ≤ n, r ′ = n + 3

−n(q2 − q2
2 ) if r ∈ {n + 1, n + 2}, r ′ = n + 3

(n+2)(n+3)

2 (q4 − q2
2 ) if r = n + 3, r ′ = n + 4.
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Because F depends only on the first n replicas, we may use the exchangeability of repli-
cas to rewrite this equation in terms of the overlaps from the first n + 2 replicas. We have
(with the notation (1.13))

ν((σ n+1
i σ n+2

i − q2)F (V n
i ))

= β2

√
N

∑

1≤r<r ′≤n+2

A
n+1,n+2
r,r ′ ν(Rr,r ′F(V n

i )) + ν(F 2(V n
i ))

1
2 O(N−1).

Expressing ν(Rr,r ′F(V n
i )) = ν(Rr,r ′F(V n)) + ν(Rr,r ′F(V n

i )) − ν(Rr,r ′F(V n)) and collect-
ing terms finishes the proof. �

By Corollary 2.3, to prove Lemma 4.2 we have two tasks: compute derivatives and bound
errors. We begin by isolating a series of preparatory calculations. Let us denote the local field
for the N th site and r th replica by �r

N and let

�ψ = �ψn
N := (ε1�1

N, ε1, . . . , εn�n
N , εn).

We first note that ‖ �ψ‖2
2 has finite moments of all orders.

Lemma 6.1 Let k ∈ N be fixed. Then there exists a C(k) depending only on k so that

ν((�1
N)2k) ≤ C(k)

Proof The proof is by Gaussian integration by parts and induction on k. The reader may
consult [4] for more details. �

Let us introduce

X n,− := X n − 1√
N

�ψ.

Lemma 6.2 Suppose that the high temperature condition (1.4) holds. Let l ∈ [2n] be fixed.
Then we have

ν((εkεk′ − q2)ε
r∂xl

(GF)(X n,−)) = A(k, k′, r)ν(∂xj
(GF)(X n)) + Er(F,G). (6.1)

Proof This follows from a straightforward sequence of applications of (2.2) and Taylor’s
Theorem. �

Lemma 6.3 Suppose that the high temperature condition (1.4) holds. Let l ∈ [2n] be fixed
and suppose that r ≤ n. Then we have

ν((εkεk′ − q2)ε
r�r

N∂xl
(GF)(X n,−)) = B(k, k′, r)ν(∂xj

(GF)(X n)) + Er(F,G). (6.2)

Proof We consider only the generic case 1 ≤ k < k′ ≤ n, k, k′ 
= r . The remaining cases
are easy adaptations of the main argument. The first step is to apply Gaussian integration
by parts. Noting that X n,− does not involve the disorder appearing in the local field under
consideration,
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ν((εkεk′ − q2)ε
r�r

N∂xl
(GF)(X n,−))

=
∑

1≤r ′≤n

N−1∑

j=1

β

N
ν((εkεk′ − q2)ε

rσ r
j εr ′

σ r ′
j ∂xl

(GF)(X n,−))

− n

N−1∑

j=1

β

N
ν((εkεk′ − q2)ε

rσ r
j εn+1σn+1

j ∂xl
(GF)(X n,−)).

Rewriting in the language of overlaps we have

ν((εkεk′ − q2)ε
r�r

N∂xl
(GF)(X n,−))

=
∑

1≤r ′≤n

βν((εkεk′ − q2)ε
rεr ′

R−
r,r ′∂xl

(GF)(X n,−))

− nβν((εkεk′ − q2)ε
rεn+1R−

r,n+1∂xl
(GF)(X n,−)).

Successive applications of (2.2) and Taylor’s theorem (cf. Sect. 3) give

ν((εkεk′ − q2)ε
r�r

N∂xl
(GF)(X n,−)) = βq2[2q2 + q2

2 − 3q4]ν(∂xl
(GF)(X n)) + Er(F,G).

The extra factor of q2 in front comes from the replacement of the variables Rk,k′ using
assumption (1.4) �

Proof of Lemma 4.2 Applying Corollary 2.3 to the function K(V) defined implicitly by

K(V) := GF(X n),

we must compute an expression for the first term on the right-hand side. Note that

∂

∂σ r
i

K = 1√
N

(
�r

i

∂

∂xr

GF(X n
i ) + ∂

∂xr+n

GF(X n
i )

)
.

Thus, we may compute ν((σ r
i σ r ′

i − q2)∇K(V n
i ) · (V n − V n

i )) by directly applying Lem-
mas 6.2 and 6.3.

To bound the error given by Corollary 2.3, we use Taylor’s Theorem and Hölder’s in-
equality along with (1.4) to obtain

|Rem(K)| ≤ Er(F,G). �

Proof of Lemma 4.1 The first equation, (4.1), follows from a calculation using integration
by parts. Indeed, we have

ν

(∑

i<j

β

N
gi,j σ

iσ jG(X n)F (X n)

)
= 1

N2

∑

i<j

∑

1≤r≤n

ν(σ 1
i σ 1

j σ r
i σ r

j ∂xr (GF))

+ β

N3/2

∑

i<j

∑

1≤r≤n

ν(σ 1
i σ 1

j σ r
i σ r

j GF)

− n
β

N3/2

∑

i<j

ν(σ 1
i σ 1

j σ n+1
i σ n+1

j GF).
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Using the language of overlaps, this simplifies to

ν

(∑

i<j

β

N
gi,j σ

iσ jG(X n)F (X n)

)

= 1

2

∑

1≤r≤n

ν(R2
1,r∂x2r−1(GF))

+ β
√

N

2

∑

1≤r≤n

ν(R2
1,rGF) − n

β
√

N

2
ν(R2

1,n+1GF) + Er(F,G)

where R1,1 = 1. Let us expand each of the overlaps (excluding R1,1) using

R1,r = R1,r − q2 + q2.

By (1.4) and the Cauchy-Schwarz inequality we have

ν

(∑

i<j

β

N
gi,j σ

iσ jG(X n)F (X n)

)

= 1

2
ν(∂x1(GF)) + β

√
N(1 − q2

2 )

2
ν(GF) + q2

2

2

∑

2≤r≤n

ν(∂xr (GF))

+ βq2

∑

2≤r≤n

ν(R1,rGF) − nβq2ν(R1,n+1GF) + Er(F,G),

which proves the first statement.
Let us consider next the term involving the scaled magnetization. By symmetry,

ν(M1G(X n)F (X n)) = ν(
√

N(ε1 − q1)G(X n)F (X n)).

We have

ν(
√

N(ε1 − q1)G(X n)F (X n)) = ν(
√

N(ε1 − q1)(GF)(X n,−))

+
∑

1≤r≤n

ν((ε1 − q1)ε
r�r

N∂xr (GF)(X n,−))

+
∑

1≤r≤n

ν((ε1 − q1)ε
r∂xn+r (GF)(X n,−)) + Er(F,G).

Applying Lemma 2.1 and noting that the zeroth order term for the decoupled measure
vanishes,

ν(
√

N(ε1 − q1)G(X n,−)F (X n,−)) = ν ′
0(

√
N(ε1 − q1)G(X n,−)F (X n,−)) + Er(F,G).

Using symmetry, Lemma 2.2 gives

ν ′
0(ε

1 − q1)G(X n,−)F (X n,−))

= β2q1(1 − q2)
∑

2≤r≤n

ν(G(X n,−)F (X n,−)R1,r )
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+ β2(q3 − q1q2)
∑

{r,r ′}⊆[n]\{1}
ν(G(X n,−)F (X n,−)Rr,r ′)

− nβ2q1(1 − q2)ν(G(X n,−)F (X n,−)R1,n+1)

− nβ2(q3 − q1q2)
∑

2≤r≤n

ν(G(X n,−)F (X n,−)Rr,n+1)

+ n(n + 1)

2
β2(q3 − q1q2)ν(G(X n,−)F (X n,−)Rn+1,n+2) + Er(F,G).

An application of Taylor’s theorem and the Cauchy-Schwarz inequality implies

ν ′
0(ε

1 − q1)G(X n,−)F (X n,−))

= β2q1(1 − q2)
∑

2≤r≤n

ν(G(X n)F (X n)R1,r )

+ β2(q3 − q1q2)
∑

{r,r ′}⊆[n]\{1}
ν(G(X n)F (X n)Rr,r ′)

− nβ2q1(1 − q2)ν(G(X n)F (X n)R1,n+1)

− nβ2(q3 − q1q2)
∑

2≤r≤n

ν(G(X n)F (X n)Rr,n+1)

+ n(n + 1)

2
β2(q3 − q1q2)ν(G(X n)F (X n)Rn+1,n+2) + Er(F,G).

Next let us consider the terms given by the derivatives of GF . Arguments analogous to
Lemmas 6.2 and 6.3 show that we have (using Lemma 2.1 and Taylor’s Theorem)

ν((ε1 − q1)ε
1∂xn+1(GF)(X n,−)) = (1 − q2

1 )ν(∂xn+1(GF)(X n)) + Er(F,G)

and

ν((ε1 − q1)ε
r∂xn+r (GF)(X n,−)) = (q2 − q2

1 )ν(∂xn+r (GF)(X n)) + Er(F,G)

for r ≥ 2.
The terms involving the local fields �1

N, . . . , �n
N may be computed using integration by

parts. For each k ∈ {1, . . . , n}, we have (noting that X n,− does not involve the disorder
appearing in the local fields under consideration)

ν((ε1 − q1)ε
k�k

N∂xk
(GF)(X n,−))

=
∑

1≤r≤n

N−1∑

j=1

β

N
ν((ε1 − q1)ε

kσ k
j εrσ r

j ∂xk
(GF)(X n,−))

− n

N−1∑

j=1

β

N
ν((ε1 − q1)ε

kσ k
j εn+1σn+1

j ∂xk
(GF)(X n,−)).
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Rewriting in the language of overlaps we have

ν((ε1 − q1)ε
k�k

N∂xk
(GF)(X n,−))

=
∑

1≤r≤n

βν((ε1 − q1)ε
kεrR−

k,r∂xk
(GF)(X n,−))

− nβν((ε1 − q1)ε
kεn+1R−

k,n+1∂xk
(GF)(X n,−)).

The usual applications of Lemma 2.1 and Taylor’s theorem give

ν((ε1 − q1)ε
1�1

1∂x1(GF)(X n,−))

=
∑

2≤r≤n

βq1(1 − q2)ν(R1,r ∂x1(GF)(X n))

− nβq1(1 − q2)ν(R1,n+1∂x1(GF)(X n)) + Er(F,G)

= −βq1q2(1 − q2)ν(∂x1(GF)(X n)) + Er(F,G)

and

ν((ε1 − q1)ε
k�k

1∂xk
(GF)(X n,−))

= βq1(1 − q2)ν(R1,k∂xk
(GF)(X n))

+
∑

2≤r≤n
r 
=k

β(q3 − q2q1)ν(Rk,r∂xk
(GF)(X n))

− nβ(q3 − q2q1)ν(Rk,n+1∂xk
(GF)(X n)) + Er(F,G)

= βq1q2(1 − q2)ν(∂xk
(GF)(X n))

− 2βq2(q3 − q2q1)ν(∂xk
(GF)(X n)) + Er(F,G)

for each 2 ≤ k ≤ n. The second equality in each expression follows by replacing each over-
lap by q2 at the cost of a term of type Er(F,G) via (1.4). Collecting terms gives the final
expression. �
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